A Supercomputing Study of Photovoltaic Quantum Dots

Shanshan Wu^{1,2}, Michael McGuigan² James Glimm^{1,2}, James Davenport², Stan Wong^{1,2}, Amanda Tiano^{1,2}

1. Stony Brook University Brookbayen National Laborator

2. Brookhaven National Laboratory

Renewable Energy Share of Global Final Energy Consumption, 2008

-- Renewables 2010 Global Status Report

Growth Rates of Renewable Energy Capacity

Cost of Electricity by Source

ST NY BR K

STATE UNIVERSITY OF NEW YORK

-- http://www.claverton-energy.com/?dl_id=385

Efficiency of Photovoltaic Solar Cell

Materials	Efficiency
Crystalline	12 – 40%
Thin film	7 – 10%
Quantum Dot	Up to 65%

-- Renewables 2010 Global Status Report

-- http://www.futurepundit.com/archives/002789.html

Quantum Dot Solar Cell

• Basic structure:

A quantum dot, composed of semiconducting material, placing on a silicon substrate.

• Active element:

The properties of quantum dot, especially its band gap, determine the efficiency of the solar cell.

ST MANected via organic linker to a drain, modeled as BR Solution

Molecule Visualization

CdSe dot and Gold dot are connected by sulfur atoms with linker.

-- Visualized by VMD

Comparison of Band Gaps

- -- DFT B3LYP exchange correlation potential
- ---Gaussian basis set, core potential, NWChem 5.0

Energy States Overlap Computation

• Fermi's Golden Rule

$$T_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \left| \vec{d} \right| i \right\rangle \right|^2 \rho$$

where P is the density of final states (number of states per unit of energy), and $\langle f | \vec{d} | i \rangle$ is the matrix element of the dipole moment \vec{d} between the final and initial states

$$\vec{d} = e\left(\sum_{i} x_{i}, \sum_{i} y_{i}, \sum_{i} z_{i}\right)$$

 Under the same grid system, the inner product of energy states could be approximated by multiplying the data of wave functions.

Band structure of CdSe18 and linker

STATE UNIVERSITY OF NEW YORK

Band structure of CdSe18 and linker

STATE UNIVERSITY OF NEW YORK